Methods of Combining Multiple Classifiers with Different Features and Their Applications to Text-Independent Speaker Identification
نویسندگان
چکیده
In practical applications of pattern recognition, there are often different features extracted from raw data which needs recognizing. Methods of combining multiple classifiers with different features are viewed as a general problem in various application areas of pattern recognition. In this paper, a systematic investigation has been made and possible solutions are classified into three frameworks, i.e. linear opinion pools, winner-take-all and evidential reasoning. For combining multiple classifiers with different features, a novel method is presented in the framework of linear opinion pools and a modified training algorithm for associative switch is also proposed in the framework of winner-take-all. In the framework of evidential reasoning, several typical methods are briefly reviewed for use. All aforementioned methods have already been applied to textindependent speaker identification. The simulations show that results yielded by the methods described in this paper are better than not only the individual classifiers’ but also ones obtained by combining multiple classifiers with the same feature. It indicates that the use of combining multiple classifiers with different features is an effective way to attack the problem of text-independent speaker identification.
منابع مشابه
Author gender identification from text using Bayesian Random Forest
Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...
متن کاملتشخیص آریتمی انقباضات زودرس بطنی در سیگنال الکتریکی قلب با استفاده ازترکیب طبقهبندها
Cardiovascular diseases are the most dangerous diseases and one of the biggest causes of fatality all over the world. One of the most common cardiac arrhythmias which has been considered by physicians is premature ventricular contraction (PVC) arrhythmia. Detecting this type of arrhythmia due to its abundance of all ages, is particularly important. ECG signal recording is a non-invasive, popula...
متن کاملPhonetic Speaker Id
This paper describes the exploration of text-independent speaker identification using novel approaches based on speakers’ phonetic features instead of traditional acoustic features. Different phonetic speaker identification approaches are discussed in this paper and evaluated using two speaker identification systems: one multilingual system and one single language multiple-engine system. Furthe...
متن کاملGeneral Machine Learning Classifiers and Data Fusion Schemes for Efficient Speaker Recognition
Data fusion methods can take advantage of the concepts of diversity and redundancy to improve system performance. Diversity can be used to improve system performance through the incorporation of different information. Similarly, redundancy can achieve the same goals through the re-use of data. These concepts have been thoroughly applied on pattern recognition problems. The basic idea is that if...
متن کاملNew Filter Structure based on Admissible Wavelet Packet Transform for Text-Independent Speaker Identification
Identical acoustic features like Mel frequency cepstral Coefficients (MFCC)and Linear predictive cepstral coefficients (LPCC) are being widely used for different tasks like speech recognition and speaker recognition, whereas the requirement of speaker recognition is different than that of speech recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJPRAI
دوره 11 شماره
صفحات -
تاریخ انتشار 1997